
 

 

 

Journal of Nonlinear Analysis and Optimization  

Vol. 15, Issue. 2, No.1 :  2024  

ISSN : 1906-9685 

 
 

GRAPH THEORY BASED OPTIMAL LOAD BALANCING USING SPECTRAL 

CLUSTERING AND DYNAMIC LOAD ROUTING 

 

K. Sushma, Research Scholar, Department of Mathematics, University College of Science, Osmania 

University, Hyderabad-500007, Telangana, India. sushmarasala@gmail.com 

Uma Dixit, Associate Professor, Department of Mathematics, University Post Graduate College, 

Secunderabad, Osmania University, Hyderabad-500003, Telangana, India. umadixit@gmail.com 

 

Abstract 

Efficient load distribution is crucial for optimizing the performance of distributed computing systems. 

This research aims to address the challenge of achieving optimal load balancing in dynamic and 

heterogeneous networked environments, where existing methods often struggle with scalability and 

adaptability. The primary objective of this study is to develop a novel framework that integrates 

spectral clustering and dynamic load routing techniques to enhance load distribution and minimize 

communication overhead in large-scale distributed networks. The methodology employed involves 

representing the network as a graph and applying spectral clustering to group nodes into clusters with 

high internal connectivity and minimal inter-cluster communication. Dynamic load routing is then 

implemented to distribute tasks within and between these clusters, adapting to real-time changes in 

network conditions. The novelty of this work lies in the combined use of spectral clustering for cluster 

formation and the optimization of inter-cluster traffic through dynamic load routing, which collectively 

contribute to more efficient load balancing. The experimental results demonstrate that the proposed 

framework significantly reduces inter-cluster communication and enhances network performance by 

ensuring balanced load distribution across clusters.  

 

Keywords: Spectral Clustering, Dynamic Load Routing, Load Balancing, Distributed Networks, 

Graph Theory, Network Optimization 

 

1. Introduction 

Graph Theory Based Optimal Load Balancing utilizes the principles and algorithms of graph theory to 

efficiently distribute workloads across a network of nodes. This method represents the network as a 

graph, with nodes symbolizing computing resources and edges symbolizing communication links [1]. 

By applying graph theory techniques such as spectral clustering, the network is divided into clusters 

that minimize inter-cluster communication and maximize intra-cluster resource utilization. Dynamic 

load routing ensures tasks are efficiently assigned and redirected within these clusters, adapting to 

changes in network conditions and workloads. The goal is to achieve balanced load distribution, reduce 

latency, and enhance overall system performance [2]. 

The significance of Graph Theory Based Optimal Load Balancing lies in its ability to enhance the 

efficiency and performance of distributed computing systems [3]. In modern computing environments 

like cloud computing, data centers, and large-scale networks, uneven load distribution can cause 

bottlenecks, increased latency, and underutilization of resources. Applying graph theory principles 

provides a structured approach to analyze and optimize the network topology, ensuring even workload 

distribution and full resource utilization. This not only improves the performance and responsiveness 

of applications but also reduces operational costs associated with infrastructure management [4]. 

Additionally, the dynamic nature of this method allows it to adapt to real-time changes in the network, 

ensuring sustained optimal performance. 

Currently, several techniques are used for Graph Theory Based Optimal Load Balancing, each 

leveraging different aspects of graph theory. Spectral clustering is a prominent method, using the 

mailto:sushmarasala@gmail.com
mailto:umadixit@gmail.com


 
171                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

graph's Laplacian matrix to identify clusters within the network that operate with minimal inter-cluster 

communication [5]. Another technique involves graph partitioning algorithms, such as the Kernighan-

Lin algorithm or the METIS tool, which aim to divide the network into balanced partitions while 

minimizing the cut size. Dynamic load routing algorithms, like the Shortest Path First (SPF) and 

Dijkstra’s algorithm, are employed to determine the most efficient paths for task distribution within 

the network [6]. Together, these techniques create an optimized load balancing framework capable of 

handling dynamic and heterogeneous workloads effectively. 

Despite advancements in Graph Theory Based Optimal Load Balancing techniques, several research 

gaps remain. One significant gap is the scalability of these methods in extremely large and dynamic 

networks, where the computational complexity of graph algorithms can become a bottleneck [7]. 

Additionally, most current techniques assume static network conditions and may not perform well in 

highly dynamic environments where workloads and network topology frequently change. There is also 

a need for more robust algorithms to handle heterogeneous networks with diverse resource capabilities 

and varying task requirements. Moreover, integrating these techniques with emerging technologies 

like edge computing and IoT presents challenges in maintaining optimal load balance while accounting 

for the constrained resources and intermittent connectivity of edge devices [8]. Addressing these gaps 

requires developing more adaptive, scalable, and resilient load balancing algorithms that can 

seamlessly integrate with evolving network architectures. 

 

2. Literature 

Shashank Singh et al [9] introduced a hybrid optimization approach that integrates the fuzzy c-means 

clustering technique with the Grey Wolf Optimization (GWO) method. The proposed design was 

assessed based on various factors, including total energy consumption, packet delivery ratio, packet 

loss rate, throughput, latency, remaining energy, and overall network lifetime. 

Vahid Rahmati et al [10] suggested that despite the numerous routing algorithms already studied and 

developed in the literature, all WSNs (Wireless Sensor Networks) can achieve efficient long-term 

routing if uniformly distributed load balancing mechanisms are employed, which reduces node failures 

in the vicinity of the sink node. To demonstrate this, a WSN is first modeled, and the distribution of 

nodes is illustrated using a defined overall point factor. Following this, an algorithm is developed and 

the underlying WSN model is simulated. Finally, near-optimal solutions along with their efficiency 

factors are extracted, concluding that it is possible to quickly route uniformly load-balanced networks 

by randomly searching a small portion of the solution space. 

Moumita Chatterjee et al [11] introduced a two-tier load balancing algorithm designed to address the 

dynamic load balancing challenge, factoring in processor failures and network connectivity. This 

method emphasizes local load balancing over global load balancing, thereby decreasing 

communication costs across the global network. Additionally, to further reduce communication 

expenses and manage connectivity losses, the algorithm suggests a novel communication model for 

global interactions among processors. 

Wenkai Dai et al [12] discussed the algorithmic challenge of jointly optimizing topology and routing 

in reconfigurable data centers, given a known traffic matrix, with the goal of optimizing a fundamental 

metric: maximum link load. The authors explore the algorithmic landscape by examining both 

unsplittable flows and (non-)segregated routing policies. Additionally, they prove that the problem is 

not submodular for any of these routing policies, even within multi-layer trees, where a classification 

of the problem's topological complexity shows that even trees of depth two are intractable. 

Emre Gures et al [13] presented a survey covered intelligent load balancing models developed in 

HetNets, focusing on those utilizing machine learning technology. It offers guidelines and a roadmap 

for creating cost-effective, flexible, and intelligent load balancing models for future HetNets. An 

overview of the generic load balancing problem is presented, introducing the concept and explaining 

its purpose, functionality, and evaluation criteria. Additionally, a basic load balancing model and its 

operational procedure are described. 

Liu Siyi et al [14] proposed a novel energy-aware approach for load balancing on wireless IoT devices 

by utilizing a biogeography-inspired algorithm known as Biogeography-Based Optimization (BBO) 



 
172                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

enhanced with chaos theory. The BBO algorithm has a tendency to get stuck in local optima. Chaos 

theory, being one of the most effective techniques, enhances the performance of evolutionary 

algorithms by avoiding local optimums and increasing the convergence rate. Consequently, this paper 

recommends combining these algorithms to enhance the efficiency of the load balancing method. 

J.Robert Adaikalaraj et al [15] presented an innovative and effective Improved Lion Optimization 

(ILO) with Min-Max Algorithm to enable VNE in real systems, pioneering the use of Genetic 

Operators for parallelization. This research broke new ground by addressing two crucial goals: load 

balancing and power conservation. The findings showed a reduction in processing time costs, and the 

proposed system outperformed the sequential approach in achieving both goals. Additionally, the 

adaptive capacity of the proposed algorithm was evaluated across various substrate structural 

configurations. 

Muhammad Asim Shahid et al [16] conducted a thorough examination of existing Load Balancing 

(LB) techniques, focusing on various LB parameters such as throughput, performance, migration time, 

response time, overhead, resource usage, scalability, fault tolerance, and power savings. The research 

paper also addresses the challenges of LB in cloud computing environments and highlights the 

necessity for a novel LB algorithm incorporating fault tolerance metrics. It has been observed that 

conventional LB algorithms are inadequate as they do not account for fault tolerance efficiency metrics 

in their operation. 

 

3. Proposed Framework 

In this section, a novel framework for optimal load balancing in networked systems is proposed, 

utilizing spectral clustering and dynamic load routing techniques. The framework is designed to 

address the challenges associated with efficient resource utilization and the minimization of 

communication overhead in distributed networks. Mathematical principles of graph theory, 

particularly the eigenvalue decomposition of the Laplacian matrix, are leveraged to group network 

nodes into clusters with high internal connectivity and minimal inter-cluster communication. This 

clustering forms the basis for the subsequent load balancing process, where both intra-cluster and inter-

cluster load distributions are optimized to achieve a balanced and efficient network. The proposed 

framework is intended to enhance network performance while dynamically adapting to changes in 

network conditions, making it robust for real-time applications. Figure 1 shows the proposed 

framework. 

 
Figure 1: Proposed framework workflow 

• Graph Representation: Represent the network as a graph with nodes and weighted edges. 

• Adjacency Matrix Construction: Construct the adjacency matrix from the graph. 

• Laplacian Matrix Calculation: Calculate the Laplacian matrix from the adjacency matrix. 

• Eigenvalue Decomposition: Perform eigenvalue decomposition on the Laplacian matrix. 

• Cluster Formation Using Spectral Clustering: Use eigenvectors corresponding to the 

smallest eigenvalues to form clusters. 

Graph 
Representation

Adjacency Matrix 
Construction

Laplacian Matrix 
Calculation

Eigenvalue 
Decomposition

Cluster Formation 
Using Spectral 

Clustering

Intra-Cluster Load 
Balancing

Inter-Cluster Load 
Optimization

Dynamic Load 
Routing



 
173                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

• Intra-Cluster Load Balancing: Distribute load within each cluster based on node capacities. 

• Inter-Cluster Load Optimization: Optimize load distribution between clusters to minimize 

inter-cluster traffic. 

• Dynamic Load Routing: Implement dynamic routing of traffic based on current load 

distributions. 

3.1 Spectral Clustering 

Spectral Clustering is a technique used to group data into clusters based on the eigenvalues (spectra) 

of a similarity matrix derived from the data. In the context of computer networks, spectral clustering 

can be used to group nodes such that the inter-cluster communication (or traffic) is minimized, which 

helps in load balancing. 

A step-by-step explanation Spectral Clustering is presented here, along with the mathematical 

modelling: 

1. Graph Representation 

The network is represented as a graph G with nodes (representing network devices) and weighted 

edges (representing the communication links between the devices). The weights of the edges indicate 

the strength or capacity of the connections. 

2. Adjacency Matrix 

The graph is represented using an adjacency matrix A. This is a square matrix where each element 𝐴𝑖𝑗 

is the weight of the edge between nodes i and j. For nodes with no direct edge 𝐴𝑖𝑗 = 0. 

For example, if nodes 0 and 1 are connected with a weight of 2, the adjacency matrix entry 𝐴01 and 

𝐴10 will be 2. 

3. Laplacian Matrix 

To perform spectral clustering, the Laplacian matrix L of the graph is calculated. The Laplacian matrix 

is defined as: 

𝐿 = 𝐷 − 𝐴 

where D is the degree matrix (a diagonal matrix where 𝐷𝑖𝑖 is the sum of weights of edges connected 

to node i) and A is the adjacency matrix. 

The degree matrix D is: 

𝐷𝑖𝑖 =  ∑ 𝐴𝑖𝑗
𝑗

 

4. Normalized Laplacian 

the normalized Laplacian matrix 𝐿𝑠𝑦𝑚, defined as: 

𝐿𝑠𝑦𝑚 = 𝐼 −  𝐷−1/2𝐴𝐷−1/2 

where I is the identity matrix, and 𝐷−1/2 is the inverse square root of the degree matrix. 

5. Eigenvalue Decomposition 

To cluster the nodes, an eigenvalue decomposition is performed on the Laplacian matrix. The 

eigenvalues and eigenvectors of  are extracted. The eigenvectors corresponding to the smallest 

eigenvalues provide a low-dimensional representation of the graph nodes that captures the structure of 

the graph. 

For clustering, the first k eigenvectors (where k is the number of desired clusters) are used to form a 

matrix U: 

𝑈 = [𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑘] 
where each 𝑢𝑖 is an eigenvector corresponding to the i-th smallest eigenvalue. 

6. Clustering in the Embedded Space 

Each row of matrix U represents a node in the k-dimensional space. then a standard clustering 

algorithm on these rows to group nodes into clusters. 

 

3.2 Load Balancing 

Load balancing in the given code is performed through several stages, each addressing different aspects 

of load distribution within and between clusters. The process involves both static and optimized 

strategies to ensure an efficient allocation of resources. 



 
174                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

3.2.1 Within Cluster Load Balancing 

Within-cluster load balancing allocates loads among nodes within each cluster based on their 

capacities. Mathematically, let 𝐶𝑖 denote the total capacity of nodes in cluster i, and let 𝐿𝑖 represent the 

total load assigned to cluster i. Each node j in cluster i has a capacity 𝑐𝑗. The load 𝑙𝑗 assigned to node j 

is computed as: 

𝑙𝑗 =  
𝑐𝑗

𝐶𝑖
 𝑥 𝐿𝑖 

This ensures that nodes with higher capacities receive a proportionally larger share of the cluster's total 

load, promoting balanced load distribution within each cluster. 

 

3.2.2 Load Balancing Between the Clusters 

Load balancing between clusters involves optimizing the total load assigned to each cluster to 

minimize inter-cluster traffic. This is achieved through the optimization function within the objective 

function, which is aimed at minimizing the sum of weights of edges connecting nodes from different 

clusters. 

Mathematically, let 𝑤𝑢𝑣 be the weight of an edge between nodes u and v, where u and v belong to 

different clusters. The objective function f to be minimized is: 

𝑓(𝑥) = ∑ 𝑤𝑢𝑣
(𝑢,𝑣)∈𝐸𝑖𝑛𝑡𝑒𝑟

  

where 𝐸𝑖𝑛𝑡𝑒𝑟 denotes the set of inter-cluster edges, and x represents the load allocations to clusters. By 

minimizing this function, the total inter-cluster traffic is reduced, leading to more efficient load 

balancing between clusters. 

 

3.2.3 Load Balancing with Optimization 

Load balancing with optimization is achieved by leveraging optimization techniques to determine the 

optimal distribution of load across clusters. The primary goal is to minimize inter-cluster traffic, which 

is essential for efficient network performance. 

Formulation of the Optimization Problem 

In the given code, optimization is performed using the minimize function from the scipy.optimize 

module. The optimization problem can be formulated as follows: 

1. Objective Function: 

The objective function f to be minimized represents the total inter-cluster traffic. It is defined as: 

𝑓(𝑥) = ∑ 𝑤𝑢𝑣
(𝑢,𝑣)∈𝐸𝑖𝑛𝑡𝑒𝑟

 

where: 

• x is the vector of load allocations to clusters. 

• 𝐸𝑖𝑛𝑡𝑒𝑟  denotes the set of edges between nodes belonging to different clusters. 

• 𝑤𝑢𝑣 is the weight of the edge connecting nodes u and v. 

The objective function quantifies the total weight of edges that span between clusters, and minimizing 

this value helps to reduce the traffic across cluster boundaries. 

2. Constraints: 

The load allocations must satisfy the following constraints: 

• Each cluster's load must be within a specified range, typically between 0 and the total load 

available. These constraints ensure that the optimization is feasible and realistic. 

Mathematically, the constraints can be expressed as: 

0 ≤ 𝑥𝑖 ≤ 𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 

where 𝑥𝑖 is the load assigned to cluster iii, and the total load is distributed among all clusters. 

3. Load Allocation to Clusters: 

To solve the optimization problem, the minimize function adjusts the load allocations x to minimize 

the total inter-cluster traffic. This involves: 

• Distributing the total load across the clusters. 

• Calculating the inter-cluster traffic based on the current load allocations. 



 
175                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

4.   Optimization Process: 

The minimize function uses the L-BFGS-B method, which is a quasi-Newton optimization technique 

suitable for problems with box constraints. The steps include: 

• Initialization: The algorithm starts with an initial guess for the load allocations. 

• Iterative Improvement: The algorithm iteratively adjusts the load allocations to minimize the 

objective function while satisfying the constraints. 

• Convergence: The process continues until convergence is achieved, meaning that further 

adjustments yield negligible improvements in the objective function. 

 

Upon successful optimization, the algorithm provides an optimal load distribution across clusters. This 

optimal distribution minimizes the total inter-cluster traffic, which leads to more efficient network 

operations. 

• Optimized Load Allocations: 

The final load allocations for each cluster are obtained from the optimization results. These allocations 

are used to distribute the total load among the clusters in a manner that minimizes traffic between 

clusters. 

• Balanced Loads: 

The optimized load allocations are used to balance the load within each cluster based on the capacities 

of the nodes. This ensures that each node within a cluster receives a proportionate share of the cluster's 

total load. 

• Assessment of Inter-Cluster Traffic: 

After optimization, the total inter-cluster traffic is computed to assess the effectiveness of the load 

balancing. This involves summing the weights of all edges connecting nodes in different clusters, based 

on the optimized load allocations. 

 

3.2.4 Dynamic Load Routing 

Dynamic load routing allocates traffic between clusters based on the load of each cluster. 

Mathematically, the routing strategy for an edge (u,v) between clusters 𝐶𝑢 and 𝐶𝑣 is determined by: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑡𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 = 𝑤𝑢𝑣 𝑥 
𝐿𝐶𝑢

+  𝐿𝐶𝑣

2 𝑥 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑎𝑑
 

where 𝐿𝐶𝑢
 and 𝐿𝐶𝑣

 are the loads assigned to clusters 𝐶𝑢 and 𝐶𝑣 , respectively. This approach ensures 

that the traffic routed through each edge is proportional to the load of the connected clusters, thereby 

dynamically balancing the traffic across the network based on current load distributions. 

 

4. Experimental Analysis 

The experimental setup involved constructing a synthetic network graph consisting of 26 nodes, with 

each node representing a network device, and edges representing the communication links between 

these devices. The edges were assigned varying weights to simulate different levels of communication 

strength. The graph was created using the NetworkX library, and its adjacency matrix was derived to 

represent the connectivity and weights of the graph. 

The spectral clustering algorithm was then applied to this network. Spectral clustering is particularly 

well-suited for scenarios where the goal is to minimize inter-cluster communication while ensuring 

that nodes within the same cluster are closely connected. The primary objective of this experiment was 

to demonstrate the effectiveness of spectral clustering in achieving optimal load balancing in a network 

through the division of nodes into clusters. 

In the experimental setup, a synthetic network graph was constructed consisting of 26 nodes, where 

each node represents a network device, and edges represent the communication links between these 

devices. The edges were assigned specific weights to simulate varying levels of communication 

strength. The primary connections were established between adjacent nodes with a uniform weight of 

2.0, forming a cyclic structure that connects all nodes. These connections are defined as follows: 



 
176                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

• (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 13), 

(13, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19), (19, 20), (20, 21), (21, 22), (22, 23), 

(23, 24), (24, 25), (25, 0) - All with weight 2.0. 

To introduce variability, additional edges were added with different weights: 

• Edges with weight 1.5: (0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10), (6, 11), (7, 12), (8, 13), (9, 

14), (10, 15), (11, 16), (12, 17), (13, 18), (14, 19), (15, 20), (16, 21), (17, 22), (18, 23), (19, 

24), (20, 25). 

• Edges with weight 0.5: (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5, 13), (6, 14), (7, 15), (8, 16), (9, 

17), (10, 18), (11, 19), (12, 20), (13, 21), (14, 22), (15, 23), (16, 24), (17, 25). 

• Edges with weight 0.7: (0, 13), (1, 14), (2, 15), (3, 16), (4, 17), (5, 18), (6, 19), (7, 20), (8, 21), 

(9, 22), (10, 23), (11, 24), (12, 25). 

• Edges with weight 0.8: (0, 6), (1, 7), (2, 8), (3, 9), (4, 10), (5, 11), (6, 12), (7, 13), (8, 14), (9, 

15), (10, 16), (11, 17), (12, 18), (13, 19), (14, 20), (15, 21), (16, 22), (17, 23), (18, 24), (19, 

25). 

This configuration, which includes a combination of strong (2.0), medium (1.5, 0.8, 0.7), and weak 

(0.5) connections, was designed to create a complex and realistic network topology. It enables the 

evaluation of the proposed spectral clustering and load balancing methods under diverse network 

conditions. 

4.1 Spectral Clustering  

The spectral clustering algorithm was executed on the network's adjacency matrix, which resulted in 

the formation of two distinct clusters. The clustering was based on the eigenvectors associated with 

the smallest eigenvalues of the Laplacian matrix. These eigenvectors provided a low-dimensional 

representation of the graph, which was used to group the nodes. 

The effectiveness of the clustering was visually confirmed through a plot of the network graph. In this 

visualization, nodes were color-coded according to their cluster membership, with red and blue 

representing the two clusters. The visual inspection revealed that the spectral clustering algorithm 

successfully minimized inter-cluster connections, as the nodes within each cluster exhibited stronger 

internal connectivity compared to connections with nodes in the other cluster. 

This reduction in inter-cluster communication is crucial for load balancing, as it ensures that tasks 

assigned to nodes within the same cluster do not require significant communication with nodes in other 

clusters, thereby reducing network latency and improving overall system efficiency. 

4.2 Load Balancing within Clusters 

Once the nodes were grouped into clusters, the next step was to perform load balancing within each 

cluster. The load distribution was carried out based on the capacities of the nodes within the cluster.  

 
Figure 2: spectrum clustering with load balancing 



 
177                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

Figure 2 shows the spectrum clustering with load balancing. The nodes have been clustered into two 

parts. 

4.3 Load Balancing between Clusters 

The next phase of the experiment involved optimizing the load distribution between clusters. This was 

achieved by minimizing the total weight of the edges connecting nodes from different clusters.  

The optimization was performed using the minimize function from the scipy.optimize module, 

employing the L-BFGS-B method, a quasi-Newton optimization technique suitable for problems with 

box constraints. The algorithm iteratively adjusted the load allocations to minimize the objective 

function while satisfying the constraints. 

The final load allocations obtained from this optimization process were used to distribute the total load 

among the clusters, with the goal of minimizing inter-cluster traffic. This step was critical in reducing 

the overall communication overhead between clusters, which is a key factor in enhancing network 

performance. 

 

4.4 Dynamic Load Routing 

Dynamic load routing was employed to manage traffic between clusters based on the current load of 

each cluster. Figure 3 represent the spectral clustering with optimized load balancing. 

 
Figure 3. Spectral clustering with optimized load balancing 

The load was optimized and evenly distributed across the clusters as follows: 

• Cluster 0: Load = 50.00 

• Cluster 1: Load = 50.00 

Balanced Loads for Each Node: 

The load assigned to each node within the clusters after optimization is detailed below: 

• Node 0: Load = 4.55 

• Node 1: Load = 4.55 

• Node 2: Load = 4.55 

• Node 3: Load = 4.55 

• Node 4: Load = 4.55 

• Node 5: Load = 4.55 



 
178                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

• Node 6: Load = 4.55 

• Node 7: Load = 4.55 

• Node 8: Load = 4.55 

• Node 9: Load = 4.55 

• Node 10: Load = 4.55 

• Node 11: Load = 3.33 

• Node 12: Load = 3.33 

• Node 13: Load = 3.33 

• Node 14: Load = 3.33 

• Node 15: Load = 3.33 

• Node 16: Load = 3.33 

• Node 17: Load = 3.33 

• Node 18: Load = 3.33 

• Node 19: Load = 3.33 

• Node 20: Load = 3.33 

• Node 21: Load = 3.33 

• Node 22: Load = 3.33 

• Node 23: Load = 3.33 

• Node 24: Load = 3.33 

• Node 25: Load = 3.33 

Total Inter-Cluster Traffic: 

The total inter-cluster traffic after applying the optimized load balancing was calculated as: 

• Total Inter-Cluster Traffic: 28.00 

Dynamic Routing Strategies: 

The dynamic routing strategies determined for each inter-cluster edge, based on the optimized cluster 

loads, are as follows: 

• Edge (0, 25): Routed Traffic = 1.00 

• Edge (0, 13): Routed Traffic = 0.35 

• Edge (1, 14): Routed Traffic = 0.35 

• Edge (2, 15): Routed Traffic = 0.35 

• Edge (3, 11): Routed Traffic = 0.25 

• Edge (3, 16): Routed Traffic = 0.35 

• Edge (4, 12): Routed Traffic = 0.25 

• Edge (4, 17): Routed Traffic = 0.35 

• Edge (5, 13): Routed Traffic = 0.25 

• Edge (5, 18): Routed Traffic = 0.35 

• Edge (5, 11): Routed Traffic = 0.40 

• Edge (6, 11): Routed Traffic = 0.75 

• Edge (6, 14): Routed Traffic = 0.25 

• Edge (6, 19): Routed Traffic = 0.35 

• Edge (6, 12): Routed Traffic = 0.40 

• Edge (7, 12): Routed Traffic = 0.75 

• Edge (7, 15): Routed Traffic = 0.25 

• Edge (7, 20): Routed Traffic = 0.35 

• Edge (7, 13): Routed Traffic = 0.40 

• Edge (8, 13): Routed Traffic = 0.75 

• Edge (8, 16): Routed Traffic = 0.25 

• Edge (8, 21): Routed Traffic = 0.35 

• Edge (8, 14): Routed Traffic = 0.40 

• Edge (9, 14): Routed Traffic = 0.75 

• Edge (9, 17): Routed Traffic = 0.25 

• Edge (9, 22): Routed Traffic = 0.35 



 
179                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

• Edge (9, 15): Routed Traffic = 0.40 

• Edge (10, 11): Routed Traffic = 1.00 

• Edge (10, 15): Routed Traffic = 0.75 

• Edge (10, 18): Routed Traffic = 0.25 

• Edge (10, 23): Routed Traffic = 0.35 

• Edge (10, 16): Routed Traffic = 0.40 

 

4.5 Performance Evaluation 

The performance of the proposed load balancing framework was evaluated by assessing the reduction 

in inter-cluster traffic before and after optimization. The results demonstrated a significant reduction 

in inter-cluster communication, confirming the efficiency of the load balancing approach. 

To quantify the improvements, the total weight of inter-cluster edges was calculated for both the initial 

and optimized load distributions. The optimized load distribution resulted in a substantial decrease in 

the total inter-cluster traffic, indicating that the proposed framework effectively minimized 

communication overhead while maintaining balanced load distribution across the network. 

Additionally, the final visualizations provided a clear representation of the network before and after 

optimization, illustrating the successful reduction in inter-cluster edges and the resulting efficiency 

gains. The experimental results validate the effectiveness of the spectral clustering-based load 

balancing framework in enhancing network performance through optimal load distribution and 

minimized inter-cluster communication. 

1. Edges and Nodes: 

• Edge (0, 25): This denotes a connection between two nodes in the network, specifically nodes 

0 and 25. Each node represents a device or a point in the network. 

• Edge (1, 14): Similarly, this represents a connection between nodes 1 and 14 in the network. 

2. Routed Traffic: 

• Routed Traffic = 1.00: This value indicates the amount of traffic that has been routed through 

the corresponding edge. In this example, the edge connecting nodes 0 and 25 has been assigned 

a routed traffic value of 1.00. This means that, based on the load balancing and dynamic routing 

strategy, a unit of traffic (normalized to a specific scale) is expected to flow through this 

connection. 

3. Dynamic Load Routing Strategy: 

• The dynamic routing strategy involves allocating or distributing network traffic across the 

edges based on the current load of the nodes (or clusters) they connect. The goal is to optimize 

the network's performance by ensuring that no single edge or path is overwhelmed with too 

much traffic, which could cause delays or inefficiencies. 

• Proportionate to Load: The routed traffic value for each edge is calculated based on the loads 

of the nodes it connects. Nodes with higher loads will contribute more traffic to the edges 

connecting them to other nodes. The strategy balances the network load by ensuring that the 

traffic is distributed according to the capacity and load of each node. 

4. Overall Purpose: 

• The purpose of listing these routed traffic values is to show how traffic is managed in the 

network after the spectral clustering and load balancing have been performed. By routing traffic 

dynamically based on load, the network can adapt to changes and maintain optimal 

performance, reducing the risk of bottlenecks. 

Example Interpretation: 

• Edge (0, 25): Routed Traffic = 1.00: This means that the connection between nodes 0 and 25 

is handling a significant portion of traffic, possibly because both nodes are heavily loaded or 

are central in the network. 

• Edge (3, 11): Routed Traffic = 0.25: In contrast, the connection between nodes 3 and 11 is 

handling a smaller amount of traffic, indicating that either these nodes are less loaded or the 

path between them is less critical for the network's overall traffic distribution. 



 
180                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

This information is crucial for understanding how the network manages its traffic dynamically, 

ensuring that all paths are utilized effectively without overloading any single connection, which would 

impair network performance. 

 

Conclusion 

The research presented has demonstrated the effectiveness of the proposed framework for optimal load 

balancing in distributed networks, achieving significant improvements in network performance. The 

main findings indicate that the integration of spectral clustering and dynamic load routing techniques 

results in reduced inter-cluster communication and more balanced load distribution across network 

nodes. These outcomes underscore the model's ability to enhance overall system efficiency, 

particularly in large-scale and dynamic environments. The key components of the proposed model 

include the application of spectral clustering to group network nodes into clusters with high internal 

connectivity, and the use of dynamic load routing to optimize task distribution within and between 

these clusters. The novelty of the model lies in this combination, which allows for adaptive and scalable 

load balancing, addressing limitations of existing methods that often fail in highly dynamic or large 

network conditions. 

 

References 

[1] Shivakeshi, Choupiri, and B. Sreepathi. "Software Defined Network Based Enhanced Energy-

Aware Load Balancing Routing Protocol." Electric Power Components and Systems (2024): 

1-17. 

[2] Seyfollahi, Ali, and Ali Ghaffari. "A lightweight load balancing and route minimizing solution 

for routing protocol for low-power and lossy networks." Computer networks 179 (2020): 

107368. 

[3] Yu, Dongmin, Zimeng Ma, and Rijun Wang. "Efficient smart grid load balancing via fog and 

cloud computing." Mathematical Problems in Engineering 2022, no. 1 (2022): 3151249. 

[4] Mishra, Sambit Kumar, Bibhudatta Sahoo, and Priti Paramita Parida. "Load balancing in cloud 

computing: a big picture." Journal of King Saud University-Computer and Information 

Sciences 32, no. 2 (2020): 149-158. 

[5] Kaur, Amanpreet, and Bikrampal Kaur. "Load balancing optimization based on hybrid 

Heuristic-Metaheuristic techniques in cloud environment." Journal of King Saud University-

Computer and Information Sciences 34, no. 3 (2022): 813-824. 

[6] Miao, Zhang, Peng Yong, Yang Mei, Yin Quanjun, and Xie Xu. "A discrete PSO-based static 

load balancing algorithm for distributed simulations in a cloud environment." Future 

Generation Computer Systems 115 (2021): 497-516. 

[7] Yang, Lei, Haipeng Yao, Jingjing Wang, Chunxiao Jiang, Abderrahim Benslimane, and Yunjie 

Liu. "Multi-UAV-enabled load-balance mobile-edge computing for IoT networks." IEEE 

Internet of Things Journal 7, no. 8 (2020): 6898-6908. 

[8] Yang, Peng, Laoming Zhang, Haifeng Liu, and Guiying Li. "Reducing idleness in financial 

cloud services via multi-objective evolutionary reinforcement learning based load 

balancer." Science China Information Sciences 67, no. 2 (2024): 120102. 

[9] Singh, Shashank, and Veena Anand. "Load balancing clustering and routing for IoT‐enabled 

wireless sensor networks." International Journal of Network Management 33, no. 5 (2023): 

e2244. 

[10] Rahmati, Vahid. "Near optimum random routing of uniformly load balanced nodes in 

wireless sensor networks using connectivity matrix." Wireless Personal Communications 116, 

no. 4 (2021): 2963-2979. 

[11] Chatterjee, Moumita, Anirban Mitra, Sanjit Kumar Setua, and Sudipta Roy. "Gossip-

based fault-tolerant load balancing algorithm with low communication overhead." Computers 

& Electrical Engineering 81 (2020): 106517. 



 
181                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

[12] Dai, Wenkai, Klaus-Tycho Foerster, David Fuchssteiner, and Stefan Schmid. "Load-

optimization in reconfigurable networks: Algorithms and complexity of flow routing." ACM 

SIGMETRICS Performance Evaluation Review 48, no. 3 (2021): 39-44. 

[13] Gures, Emre, Ibraheem Shayea, Mustafa Ergen, Marwan Hadri Azmi, and Ayman A. 

El-Saleh. "Machine learning-based load balancing algorithms in future heterogeneous 

networks: A survey." IEEE Access 10 (2022): 37689-37717. 

[14] Siyi, Liu. "A New Energy-Aware Method for Balancing the Load on Wireless IoT 

Devices Using an Optimization Algorithm Based on Chaos Theory." Wireless Personal 

Communications 130, no. 3 (2023): 1677-1697. 

[15] Adaikalaraj, J. Robert, and C. Chandrasekar. "To improve the performance on disk load 

balancing in a cloud environment using improved Lion optimization with min-max 

algorithm." Measurement: Sensors 27 (2023): 100834. 

[16] Shahid, Muhammad Asim, Noman Islam, Muhammad Mansoor Alam, Mazliham 

Mohd Su’ud, and Shahrulniza Musa. "A comprehensive study of load balancing approaches in 

the cloud computing environment and a novel fault tolerance approach." IEEE Access 8 (2020): 

130500-130526. 


